The Internet of the Future

Convergence Nirvana?

6/28/00

Scott Bradner

Harvard University / IETF sob@harvard.edu

policy - 1

Convergence as Mantra

- is IP the ATM of today?ATM was the answer, what was your question?note that ATM is no longer *the* answer
- is convergence a mantra or a direction?
- do people building networks want it?
- ◆ is MPLS IETF's ATM?
- how useful is circuit switching in an IP world?
 not very for applications
 VPNs & long lived flows (video on demand) OK

Convergence as Myth

- phone traffic is special only in that you pay for it by the minute
- need to change IP to support phones never needed to change IP for an application before voice will be a "niche market" (but not for \$\$)
- need to use phone #s as IP addresses physics says this is *very* hard
- video on demand will be a big money maker couch potato heaven has not been true to date

policy - 3

Convergence as Reality

- mixed world
 hard to justify tearing out existing circuit-switched nets
 known operations, significant amortization xx
 no reason to recreate it if starting new
- very mixed view on economics of convergence
 yes equipment is cheaper but equipment is not a big part
- phone companies are very worried why would I call you through them? (just so they can charge?)
- too much focus on QoS
 policy 4

Convergence and Architecture

- one big issue in telco/Internet convergence are the architectural assumptions in each camp
- Internet:

```
stupid network
smart edges
applications on 3rd party servers or in end nodes
```

teleco network
 smart network (Intelligent Network - IN)
 dumb edges
 applications in service provider network

policy - 5

Architecture Example

- within IETF megaco vs. SIP
- megaco/H.248:
 explode phone switch
 into server & gateways (MGC & MGs)
 but still "looks" and manages like a a phone switch
- SIP / H.323 (original concept)
 end-to-end to smart phones
 can work on their own or with local light-weight servers
 applications in phone not network

policy - 6

applications in server

Phone Net vs. Internet

phone net

applications & services in network applications built & installed by phone switch company services provided by phone company hard to do 3rd-party applications & services

Internet

applications & services in computers at edges applications & services can be built by users applications & services can be installed by users no permission required from network operator

policy - 7

Quote

♦ from Sun, 16 Apr 2000 11:10:57 +0200 Hi Roy,

I still don't understand why it is a "users" choice where the "services" are executed - I would have thought that this would be networks choice - and the means for doing that is what we are now discussing. Can you please clarify why a user "MAY" which to decieded this.

Convergence Prospects

- campus IP-tel yes!
- ♦ WAN IP-tel some
- ◆ VoDSL/VoCable what problem is being solved?
- ◆ Internet-radio done
- video chat sure
- mini-video (CNN in a window) sure but needs useful multicast
- ◆ TV-quality video what is the problem?
- ◆ HDTV good capacity tester

policy - 9

Quality of Service (QoS)

- is the Internet a one trick pony? only 'best-effort' service currently QoS to ISP means 'I will accept your packets"
- the Internet needs multiple "products" better reliability for better money
- ◆ IETF working on QoS technology coming to your network soon RSVP & diffsery
- but real problems are business

QoS, contd.

- the ability to define or predict the performance of systems on a network note: predictable may not mean "best"
- unfair allocation of resources under congestion conditions
 Bill pays to get Fred's traffic dropped
- long-time SNA feature
- pundits want QoS, some purists are not sure do you want to block an emergency phone call?

policy - 11

QoS, contd.

- different views about the need for QoS
- many big IP-ISPs do not see a need
- telco-based ISPs can not imagine live without it
- just throw bandwidth at the problem' few points of congestion fixing these would not cost much compared to adding QoS
 - complex (i.e. expensive) to manage QoS
- fact: the Internet traffic pattern is not conducive to circuit-based networking
- remember: this is the Internet!

QoS Types

- predictive
 - architect network based on observed loads can also police input loads
- flow based
 - reserve bandwidth through network for an execution of an application
 - keep track of reservation in each network device in path
- non flow based
 - mark packets to indicate class
 - process differently in network based on marking

policy - 13

Flow Lengths in the Internet

IP Flow Switching Cache, 16384 active flows, 0 inactive 132159644 added, 124468367 replaced, 4892577 timed out, 2782316 invalidated statistics cleared 270640 seconds ago

Protocol	Total	Flows	Packets	Bytes	Packets	Active(Sec)	Idle(Sec)
	Flows	/Sec	/Flow	/Pkt	/Sec	/Flow	/Flow
TCP-Telnet	5222464	19.2	40	89	785.3	32.9	17.3
TCP-FTP	2087345	7.7	6	87	47.9	7.3	22.7
TCP-FTPD	1275958	4.7	95	390	449.5	21.9	23.6
TCP-WWW	83916123	310.0	9	304	2944.5	5.4	20.9
TCP-SMTP	14106833	52.1	8	173	448.9	6.4	21.6
TCP-X	94849	0.3	81	176	28.6	24.1	17.8
TCP-other	16095661	59.4	38	274	2290.8	20.9	21.5
UDP-TFTP	339	0.0	1	207	0.0	2.3	21.0
UDP-other	5059444	18.6	11	217	208.4	9.4	26.0
ICMP	4201689	15.5	2	83	46.0	5.2	26.8
IGMP	39809	0.1	30	398	4.4	48.2	29.4
IPINIP	9431	0.0	1808	254	63.0	147.1	18.6
GRE	32811	0.1	594	204	72.0	62.1	18.8
IP-other	909	0.0	3	223	0.0	1.2	31.8
Total:	132143665	488.2	15	260	7389.7	0.0	0.0

A Different View

- is adding bandwidth all that's needed?
- Andrew Odlyzko of AT&T Labs
 may be cheaper to just throw bandwidth at QoS problem
 - 1 only a few points of congestion
 - 2 80% of data com costs non-transmission
 - 3 adding QoS complexity will add to other costs labor, management & billing systems etc
 - 4 local part of data com dominate overall cost
 - 5 cost of transmission coming down
 Fortune reports 99.8 Tbps capacity by 2001 = glut
 upgrade congested points cheaper than QoS complexity